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Abstract

It is known that the Korteweg–de Vries (KdV) equation is a geodesic flow of anL2 metric on the
Bott–Virasoro group. This can also be interpreted as a flow on the space of projective connections
on S1. The space of differential operators∆(n) = ∂n + u2∂

n−2 + · · · + un form the space of
extended or generalized projective connections. If a projective connection is factorizable∆(n) =
(∂− ((n+ 1)/2− 1)p1) · · · (∂+ (n− 1)/2pn) with respect to quasi primary fieldspi’s, then these
fields satisfy

∑n
i=1((n + 1)/2 − i)pi = 0. In this paper we discuss the factorization of projective

connection in terms of affine connections. It is shown that the Burgers equation and derivative
non-linear Schrödinger (DNLS) equation or the Kaup–Newell equation is the Euler–Arnold flow
on the space of affine connections.
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1. Introduction

It is well known that the periodic KdV equation is the archetypal example of the Euler
flow on the coadjoint orbit of the Bott–Virasoro group. This can be interpreted as a geodesic
flow of the right invariant metric on the Bott–Virasoro group, which at the identity is given
by theL2-inner product[15,17,19].

It is well known that the KdV equation is the canonical example of a scalar Lax equation,
which is an equation defined by a Lax pair of scalar differential operators

d∆(n)

dt
= [P,∆(n)],
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where

∆(n) = dn

dxn
+ un−2

dn−1

dxn−2
+ · · · + u0.

HereP is a differential operator whose coefficients are differential polynomial in the vari-
ables, essentially determined by the requirement that [P,L] be an operator of order less
thann. The space of differential operators∆(n) is known as Adler–Gelfand–Dickey space
or AGD space.

The action of Diff(S1) on AGD space has been known since last century. Wilczynski
[18] gave a description of the transformation of scalar differential operators by a change of
variable of the independent variablex. Letx → σ(x) be a smooth change of variables. The
action of Diff(S1) on the AGD manifold associated toSL(n,R) is given by

κ : Diff (S1)× AGD → AGD, (σ,∆(n)) �→ κ(σ)∆(n),

whereκ(σ)∆(n) is the unique scalar differential operator of the formun−1 = 0.
It is known that the operators∆(n) do not preserve their form under the action of Diff(S1),

x → σ(x), due to the appearance of the(n − 1)th term−1/2n(n − 1)(σ′′/σ′n+1). Hence
we should think the operators are acting ondensities of weight−1/2(n− 1) rather than on
scalar functions, in this case we can always findun−1 = 0 as a reparametrization invariant.
Therefore, the action of Diff(S1) on∆n is given by

∂nx + un−2(x)∂
n−2
x + · · · + u0(x)

→ σ′−(n+1)/2(∂nx + ũn−2∂
n−2
x + · · · + ũ0)σ

′−(n−1)/2, (1)

where

ũn−2 = σ′2un−2(σ(x))+ 1
12n(n− 1)(n+ 1)S′(x), (2)

andS(x, σ) = (σ′′′/σ′ − 3σ′′2/2σ′2) is the Schwarzian ofx andσ.
The action of Diff(S1) transform the solutions of∆(n)ξ = 0 as densities of degree

(n− 1)/2. If µ andξ be the solutions ofκ(σ)∆(n) and∆(n), then their solutions are related
by

µ = (σ′(n−1)/2ξ) ◦ σ.
In the case forn = 2, this coincides with the action of Virasoro group on the space of Hill
operators, dual space of Virasoro algebra.

Let us define the Dickey’s notion[3,4] of quasi primaryfield. If

un−2 = ũn−2

cn
, cn = 1

12
n(n− 1)(n+ 1), (3)

then we sayun−2 is a quasi primary field with conformal weight 2.
A quasi primary field of the weight 1 is a fieldp(x) with a transformation law under

diffeomorphismx �→ σ(x)

p(t) = p(x)σ + χ, χ = σ′

σ
. (4)
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A quasi primary field of weight 2 is factorizable (we assume it) to quasi primary field of
weight 1. Later we will see that this is related to Miura transformation.

Leonid Dickey showed that a quasi primary fieldu of the weight 2 can be represented as

u = −1
2p

2 + p′,

wherep(x) is a quasi primary field of the weight 1. This quasi primary field will play a big
role in our paper.

1.1. Goal and plan

Earlier we have studied the action of vector field Vect(S1)on the space of Adler–Gelfand–
Dickey operators[6–8]. This space is identified with the space of projective connections,
initiated by Cartan[2]. It is known that all these operators are factorizable

∆(n) = (∂ − v1) · · · (∂ − vn),

wherevi’s are Miura variables and satisfy
∑n

i=1 vi = 0. It was shown by Dickey that all
these Miura variables are connected to quasi primary fields.

In this paper we will consider the Burgers and derivative non-linear Schrödinger (DNLS)
equations as an Euler–Arnold flows on the space of first-order linear differential operators.
There are various versions of non-linear derivative Schrödinger equations, in this paper we
will consider only the Kaup–Newell version of DNLS equation.

The product of two linear differential operators form a projective connection. Thus we
say that the space of linear differential operators form a space of affine connections. When
an operator or projective connection on circle is factorizable, the diffeomorphism group acts
on it through affine connections. In this way we connect the flows on the space of projective
connections and the affine connections.

The paper is arranged as follows. InSection 2we review some background materials,
such as the definition of projective connection, KdV equation as the Euler–Arnold flow[1]
on the space of projective connections etc. InSection 3we discuss affine connections and
its Vect(S1) module structure. We show that the Burgers and the Kaup–Newell equations
as the Euler–Arnold type flows on the space of affine connections. The relation the KdV
flows and the Burgers flows is given inSection 4.

In this paper we will also establish a natural relationship between the second Hamiltonian
(or Poisson) operator of the KdV equation and the operator1 of the Burgers equation. We
show that the Poisson operator of the KdV equation is factorizable into the Poisson operator
of the Burgers equation and some linear operator.

Let us state our result of the paper.

Theorem 1. Let u be a quasi primary field of weight 2, given byu = −1/2p2 +px, where
p is a quasi primary field of weight 1. This induces the factorization of the projective con-
nection(or Hill’s operator)∆(2) = ∆1∆1 in terms of affine connections(∆1 or∆1) acting

1 This is a non-skew symmetric operator.
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on the space of tensor densities of degree±1/2, given by

F1/2
∆1→F−1/2

∆1

→F−3/2.

(A) This action ofVect(S1) on the space of affine connections generates a Hamiltonian
flow of Euler–Arnold type, and give rise to Burgers and Kaup–Newell equations.

(B) SupposeOKdV = 1/2 d3/dx3 + 2ud/dx + u′ andOB = 1/2(d2/dx2 + vd/dx + v′
be the Hamiltonian structures for KdV and Burgers equation, respectively. Then the
factorization∆(2) = ∆1∆1 induces a factorization:

OKdV = (∂ − v)OB,

for all u = 1/2(v′ − 1/2v2).

2. Preliminaries

Let Diff (S1) be the group of orientation preserving diffeomorphisms of the circle. It is
known that the group Diff(S1) as well as its Lie algebra of vector fields onS1,TidDiff (S1) =
Vect(S1), have non-trivial one-dimensional central extensions, the Bott–Virasoro group
D̂iff (S1) and the Virasoro algebraVir, respectively[11,12].

The Lie algebra Vect(S1) is the algebra of smooth vector fields onS1. This satisfies the
commutation relations[

f
d

dx
, g

d

dx

]
:= (f(x)g′(x)− f ′(x)g(x))

d

dx
. (5)

One parameter family of Vect(S1) acts on the space of smooth functionsC∞(S1) by

L(µ)f(x)d/dxa(x) = f(x)a′(x)− µf ′(x)a(x), (6)

where

L(µ)f(x)d/dx = f(x)
d

dx
− µf ′(x) (7)

is the derivative with respect to the vector fieldf(x)d/dx. Eq. (6)implies a one parameter
family of Vect(S1) action on the space of smooth functionsC∞(S1).

Let us denoteFµ(M) the space of tensor densities of degree−µ
Fλ = {a(x)dx−λ|a(x) ∈ C∞(S1).

Thus, we say

F−λ ∈ Γ(Ω⊗λ), Ω⊗λ = (T ∗S1)⊗λ,

whereF0(M) = C∞(M), the spaceF−1(M) coincides with the space differential forms.
Hence, the equation can be interpreted as an action of Vect(S1) on Fµ(S1), a tensor

densities onS1 of degreeµ [14,16].
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ThusEq. (5)can be interpreted as an action of Vect(S1) onF1 ∈ Γ(Ω−1). In this paper
we will mainly consider the action of Vect(S1) onF1/2 ∈ Γ(Ω−1/2), square root of the
tangent bundle

Lf(x)d/dxh(x) = (f(x)h′(x)− 1
2f

′(x)h(x)), (8)

whereh(x)
√

d/dx ∈ Γ(Ω−1/2) [5,9].

2.1. Projective connection on the circle and KdV equation

Let us denoteΩ±1/2 be the square root of the cotangent and tangent bundle, respectively.

Definition 1. An extended projective connection on the circle is a class of differential
(conformal) operators

∆(n) : Γ(Ω−(n−1)/2) → Γ(Ω(n+1)/2),

such that

1. The symbol of∆(n) is the identity,

2.
∫
S1
(∆(n)s1)s2 =

∫
S1
s1(∆

(n)s2)

for all si ∈ Γ(Ω−(n−1)/2).

Hence the projective connection∆(2) can be identified with the Hill operator d2/dx2+u(x).
KdV equation. The spaceC∞(S1) ⊕ R is identified with a part of the dual space to the

Virasoro algebra. It is called theregular part, and the pairing between this space and the
Virasoro algebra is given by:〈

(u(x), a),

(
f(x)

d

dx
, α

)〉
=

∫
S1
u(x)f(x)dx+ aα.

It is well known that the Virasoro algebra is the unique (upto isomorphism) non-trivial
central extension of Vect(S1). It is given by the Gelfand–Fuchs cocycle[12]

ω

(
f(x)

d

dx
, g(x)

d

dx

)
=

∫
S1
f ′(x)g′′(x)dx.

The Virasoro algebra is therefore a Lie algebra on the space Vect(S1)⊕ R.[(
f

d

dx
, a

)
,

(
g

d

dx
, b

)]
=

([
f

d

dx
, g

d

dx

]
Vect(S1), ω(f, g)

)
. (9)

Theregular partof the dual of the Virasoro algebra isC∞ ⊕ R, and a pairing between this
space and Virasoro algebra is given by〈

(u(x), c),

(
f(x)

d

dx
, a

)〉
:=

∫
S1
u(x)f(x)dx+ ca.

It is almost trivial to find the KdV equation on the coadjoint orbit from this recipe.
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By Lazutkin and Pankratova[13], this dual space can be identified with the space of
Hill’s operator or the space of projective connections(see [7,9] for details)

∆ = d2

dx2
+ u(x), (10)

whereu is a periodic potential:u(x+ 2π) = u(x) ∈ C∞(R). The Hill’s operator maps

∆ : F1/2 → F−3/2. (11)

The action of Vect(S1) on the space of Hill’s operator∆ is defined by the commutation
with the Lie derivative

[Lf(x)d/dx,∆] := L−3/2
f(x)d/dx ◦∆−∆ ◦ L1/2. (12)

Certainly,Eq. (12)is the coadjoint action of Vect(S1). Hence, we can extract the operator
ad∗

u(t) from this information. The Euler–Arnold equation is the Hamiltonian flow on the
coadjoint orbit on the space of Hill’s operator, generated by the Hamiltonian

H(u) = 1
2〈u(x), u(x)〉, (13)

given by

du

dt
= −ad∗

u(x,t)u(x, t). (14)

It must be noted thatad∗
u(x,t) can be realized as the variational derivative ofH . Hence it

belongs to the space of Virasoro algebra, and it is given by

ad∗
u(x,t) = 1

2

d3

dx3
+ 2u

d

dx
+ u′.

The KdV equation follows from this definition.
Leonid Dickey2 took a different approach to study the action of vector field on the

Adler–Gelfand–Dickey space. Let us relate our work with Dickey’s work. Our formula
(12)can be easily identified with Dickey’s formula[3, Chapter 3]

V(P) = Q∆−∆P,

where

Q = (LPL−1)+ = −∆P − (∆P∆−1)+∆ = −(∆P∆−1)−,

whereP is identified withLf(x)d/dx.
The Euler–Arnold equation in this form is given by

d∆

dt
= −(∆P∆−1)−.

2 Thanks to Professor Dickey for pointing us this connection.
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3. Affine connection and Euler–Arnold flows

Definition 2. An affine connection on the circle is a linear first-order differential operator

D : Γ(Ω−1/2) → Γ(Ω1/2),

such that

1. The (formal) square of theD is the projective connection.
2. (Ds1)s2 ∈ C∞(S1), for all si ∈ Γ(Ω−1/2).

SinceDmaps one space to another, so square ofD is not a precise statement. Hence later
we will present a clear explanation.

Lemma-Definition 1. A first-order differential operator maps

∂ − µp(x) : Γ(Ωµ) → Γ(Ωµ+1).

Proof. Let g ∈ Fµ andg1(x) = (∂ − µp(x)). Let us consider a transformationx → x(t)

g1(t) = (∂t − µp(t)) = (φ∂x − µ(p(x)φ + χ)g(x)φµ

= [(∂ − µp(x))g]φµ+1 = g1(x)φ
µ+1,

where we have used 1/φ d/dt = d/dx. Henceg1(x) = (∂ − µp(x)) ∈ Γ(Ωµ+1). �

Let us denoteDµ : Γ(Ωµ) → Γ(Ωµ+1).

Lemma 1.

Dµ+ν(g1g2) = (Dµg1)g2 + g1(Dνg2),

whereg1 ∈ Γ(Ωµ) andg2 ∈ Γ(Ων).

Proof. Let g1 ∈ Fµ andg2 ∈ Fν, theng1g2 ∈ Fµ+ν.

Dµ+ν(g1g2) = (∂ − (µ+ ν)p)(g1g2) = (∂ − µp)g1 · g2 + g1 · (∂ − νp)g2

= (Dµg1) · g2 + g1 · (Dνg2). �

It is clear from the definition

D2
µ ≡ (∂ − (µ+ 1)p)(∂ − µp) : Γ(Ωµ) → Γ(Ωµ+2). (15)

Remark 1. Hence we can identifyD2
µ with ∆ whenµ = −1/2.
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Let us recall our convention. We denoteF−(n−1)/2 ∈ Γ(Ω(n−1)/2). Let us consider the
factorization

∆(n) : F(n−1)/2 → F−(n+1)/2,

F(n−1)/2

(
∂+ n−1

2 pn

)
→ F(n+3)/2

(
∂+ n−3

2 pn−1

)
→ · · ·

(
∂− n−1

2

)
→ F−(n+1)/2, (16)

wherep1, . . . , pn are quasi primary fields, and the Miura variables are given by

vi :=
(
n+ 1

2
− i

)
pi. (17)

Hence we say

D(n−1)/2 · · ·D−(n−1)/2 = ∆(n) : F(n−1)/2 → F−(n+1)/2. (18)

3.1. Flows on affine connections

In this section we show that the Burgers flow and the Kaup–Newell flows are the
Euler–Arnold flows on the space of affine connections.

Burgers flow: Let us consider an operator

∆1 = d

dx
+ 1

2
A(x), (19)

acting onF1/2 ∈ Γ(Ω−1/2), square root of the tangent bundle onS1.
This∆1 satisfies

∆1 = d

dx
+ 1

2
A(z) : F1/2 → F−1/2. (20)

Definition 3. The Vect(S1)-action on∆1 is defined by the commutator with the Lie deriva-
tive

[Lf(x)d/dx,∆1] := L1/2
f(x)d/dx ◦∆1 −∆1 ◦ L−1/2

f(x)d/dx. (21)

The result of this action is a scalar operator, i.e. the operator of multiplication by a function.

Lemma 2.

[Lf(x)d/dx,∆1] = f ′′(z)+ Af′(x)+ A′f(x). (22)

Proof. By direct computation. �

Hence the operator is

OB = d2

dx2
+ A

d

dx
+ A′(x). (23)

Remark. Strictly speaking this operator is not a Poisson operator, since it does not satisfy
the skew symmetric condition. When a vector field Vect(S1) acts on the space of projective
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connections it generates a Poisson flow, and the operator involves in this flow is Poisson
operator. But when Vect(S1) acts on the space of affine connections it generates a Poisson
flow, but the operator involved here is non-skew symmetric.

Hence we immediately get the Burgers equation from the Hamiltonian equation

At = OB δH
δA

, H [A] = 1

2
A2. (24)

Thus we have the following lemma.

Lemma 3. The Euler–Arnold flow on the space of first-order differential operator gives
the Burgers equation

At = 2AAx + Axx. (25)

Kaup–Newell flow: Let us apply the above scheme in the holomorphic setting. Let us consider
an operator

∆1 = i
d

dz
− 1

2
|q|2(z), (26)

acting on vector valued functionsψ : R → C, where for some smooth functionq : R → C
with compact support.

Let us consider the VectC(S
1)-action on∆1. The result of this action is a scalar operator,

i.e. the operator of multiplication by a function.

Lemma 4.

[Lf(z)d/dz,∆1] = 1
2(if

′′(z)− |q|2f ′(z)− |q|2zf(z)). (27)

Proof. By direct computation. �

Hence the operator is

OKN = i
d2

dz2
− |q|2 d

dz
− |q|2z . (28)

If the Hamiltonian functional is given by

H =
∫

|q|2 dz,

thenδH/δq̄ = q; here we writeδ/δq is the Euler–Lagrange operator: in general iff is a
function of(q, qz, qzz, . . . ) then

δf

δq
=

∞∑
0

(−∂)i ∂f
∂q(i)

.
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Thus the Euler–Arnold flow is

qt = OKN
δH

δq̄
,

satisfies

qzz+ 2i(|q|2q)z + iqt = 0. (29)

It is a well known DNLS equation, and this has been studied by Kaup–Newell[10]. Thus
we prove the first part of our theorem.

4. Relation with the KdV flow

Let us considerEq. (16). Let us choose

p1 = p2 = · · · = pn = p(x).

This leads to

∆n =
(
∂ −

(
n+ 1

2
− 1

)
p(x)

) (
∂ −

(
n+ 1

2
− 2

)
p(x)

)
· · ·

(
∂ + n− 1

2
p(x)

)

= ∂n + cn

(
px − p2

2

)
∂n−2 + · · ·

Let us recall

∂ + 1
2v : F1/2 → F−1/2, ∂ − 1

2v : F−1/2 → F−3/2.

Let us consider the Burgers equation. Let us recall the Poisson operator of Burgers equation

OB = 1

2

(
d2

dx2
+ v

d

dx
+ v′

)
.

The Hill’s operator is equivalent to the relation

d2

dx2
+ u(x) =

(
d

dx
− 1

2
v(x)

) (
d

dx
+ 1

2
v(x)

)
, (30)

where

u = 1
2(vx − 1

2v
2),

giving the formal factorization of the Hill’s operator.
Geometrically this can be realized as

F1/2
∆1→F−1/2

∆1

→F−3/2,

where∆ = ∆1∆1 = (∂ − 1/2v)(∂ + 1/2v). This is compatible with∆ : F1/2 → F−3/2.
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Proposition 1. The Poisson operator of KdV equation is a factorizable into a Poisson
operator of the Burgers flow and a first-order linear operator.

Proof. This can be verified from

[Lf(x)d/dx,∆] ≡ [Lf(x)d/dx,∆
1∆1] = (∂ − v)[Lf(x)d/dx,∆1]

= (∂ − v)1
2(∂

2 + v∂ + v′) = (∂ − v)1
2∂(∂ + v).

Thus we find that

(∂ − v)
1

2
∂(∂ + v) ≡ 1

2

(
d3

dx3
+ 2

(
v′ − 1

2
v2

)
d

dx
+ (v′′ − vv′)

)
,

is compatible with the KdV’s Poisson operator 1/2 d3/dx3 + 2ud/dx + u′, for
u = 1/2(v′ − 1/2v2).

Hence we say that a typical skew symmetric differential operator defining the second
Hamiltonian structure of KdV is a product of the Hamiltonian structure of the Burgers
operator and(∂ − v), i.e.,

OKdV = (∂ − v)OB. �

Thus we establish a natural relationship between the KdV equation and the Kaup–Newell
equation.
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